Syntax
newrelic.agent.wrap_mlmodel(model, name=None, version=None, feature_names=None, label_names=None, metadata=None)
Enables manual instrumentation of machine learning models.
Requirements
Python agent version 9.1.0 or higher.
Description
This allows for manual instrumentation of machine learning models.
Parameters
Parameter | Description |
---|---|
object | Required. |
string | Optional. The name of the custom model. |
string | Optional. The release version of the custom model. |
list of string | Optional. A list of strings denoting the feature name(s). |
list of string | Optional. A list of strings denoting the label name(s). |
dict | Optional. Metadata to attach to the model. |
Return values
None.
Examples
Wrap machine learning model
An example of instrumenting a custom machine learning model:
def wrap_ml_example(): x_train = [[0, 0], [1, 1]] y_train = [0, 1] x_test = [[1.0, 2.0]]
model = CustomTestModel().fit(x_train, y_train) wrap_mlmodel( model, name="MyCustomModel", version="1.2.3", feature=["feature0", "feature1"], label=["label0"], metadata={"metadata1": "value1", "metadata2": "value2"}, )
labels = model.predict(x_test)
return model